Tunable Optical

Cavities for
Absorption
Spectroscopy

Frequency stability, low power con-
sumption, and the compact nature of
Vertical Cavity Surface Emitting Lasers
(VCSELSs) lead to a number of advan-
tages over existing semiconductor laser
technologies for use in tunable diode-
laser-based absorption spectroscopy
(TDLAS). VCSELSs enable selective and
sensitive trace-gas analysis, instrumental
in environmental monitoring; and com-
bustion research.

With MEMS-tunable VCSELS, the
required wavelength tuning to sweep the
gas absorption fingerprints is realized
through the actuation of a suspended
Bragg reflector, leading to physical
variation of the optical path length.

This results in the ability to tune emit-
ted wavelengths on the order of tens

of nanometers. Given the short axial
length of a typical VCSEL, displace-
ment of the suspended mirror results in
the continuous tuning of a single lasing
mode. These MEMS-tunable VCSEL
devices have recently shown promise as
a high-performance alternative to stan-
dard VCSELSs for optical gas sensing,
with demonstrations of the detection of
carbon monoxide and carbon

dioxide, as well as ammonia, at the
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telecom-relevant wavelength range near
1550 nm. We demonstrated the first
MEMS-tunable VCSELSs that operate
within the 760 to 780 nm range, a
relevant wavelength range for the
detection of O,.

Project Goals

Our goal has been to establish
complex fabrication procedures to reli-
ably reproduce electrostatically tunable
MEMS-tunable VCSELs (Fig. 1a) for
future miniaturized absorption spectros-
copy sensors. In these devices, rapid
and wide wavelength tuning is realized
through the use of an electrostatically
actuated micromechanical Bragg
reflector (Fig. 1b). A novel fabrication
method based on gas-phase etching of a
room-temperature deposited amorphous-
germanium (0-Ge) sacrificial layer to
generate the suspended mirror was used.

The fabrication procedure for the
short-wavelength MEMS-tunable
VCSELs is a relatively complex process
involving up to 12 lithographic levels
for wire-bond enabled devices
(Fig. 2). Fortunately, wafer scale pro-
cessing is possible, which enables higher
throughput in the fabrication of arrays
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of devices. It is also worth noting the
strong potential of this platform for the
simultaneous detection of various gases,
since the critical central emission wave-
lengths, from visible to near-infrared to
shortwave-infrared, depend on the selec-
tion and engineering of the epi-material.

Relevance to LLNL Mission

Our project supports several ap-
plications at the core of LLNL’s na-
tional security missions, from Stockpile
Stewardship to Homeland Security. It
will sustain the development of a new
class of compact, fiber compatible opti-
cal gas sensors for real-time detection of
chemicals. This will facilitate minimally
invasive trace-gas analysis for next-
generation sensors. The 2-D nature of
the technology enables other interesting
applications such as multiplexed smart
detection systems, adaptive imaging,
beam forming, optical computing, and
high-power lasers.

FY2008 Accomplishments
and Results

In this second year, we have com-
pleted the creation and the characteriza-
tion of the first MEMS-tunable VCSELs
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Devices & Structures

Figure 2. Schematic of the short-
wavelength MEMS-tunable VCSEL
process flow. (a) Mesa etch, AIGaAs
oxidation, p-contact metallization,
and contact window etch; (b) defi-
nition of the SiN, AR coating and Ti/
Au pad; (c) deposition of the o-Ge
~» sacrificial layer, SN, membrane, and
5 Al top contact, followed by pattern-
ing of the emission window; (d) blan-
ket SiO,/TiO, DBR evaporation and
etch back; (e) ECR etch of actuator
geometry; (f) liffoff of SiO, undercut
protection and release by sacrificial
Ge efching in XeF,.
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at emission wavelength below 800 nm
with potential for a wavelength tuning
range of +/— 30 nm, with scan rates up to
1 MHz (Figs. 3 and 4 show preliminary
results). Currently, these devices exhibit
multimode lasing operation between 767
and 737 nm. With an improved output
power and single-mode emission, short-
wavelength MEMS-tunable VCSELs
should be extremely attractive as widely-
tunable swept sources for unambiguous
O, sensing.

Figure 3. (a) Optical
micrograph and (b)
SEM photograph of
an individual fun-
able VCSEL.
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Figure 4. (a) Voltage and light output as a function of drive current for a MEMS-tunable VCSEL with a 13.5 period
suspended mirror structure. Inset: tuning response for a constant laser drive current of 2.4 mA over a range of 30 nm.
(b) HTRAN O, absorption spectrum. (c) Wavelength tuning range as a function of applied voltage.

Lawrence Livermore National Laboratory

55





